Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tedesco, Marco; Lai, Ching_Yao; Brinkerhoff, Douglas; Stearns, Leigh (Ed.)Emulators of ice flow models have shown promise for speeding up simulations of glaciers and ice sheets. Existing ice flow emulators have relied primarily on convolutional neural networks (CNN’s), which assume that model inputs and outputs are discretized on a uniform computational grid. However, many existing finite element-based ice sheet models such as the Ice-Sheet and Sea-level System model (ISSM) benefit from their ability to use unstructured computational meshes. Unstructured meshes allow for greater flexibility and computational efficiency in many modeling scenarios. In this work, we present an emulator of a higher order, finite element ice flow model based on a graph neural network (GNN) architecture. In this architecture, an unstructured finite element mesh is represented as a graph, with inputs and outputs of the ice flow model represented as variables on graph nodes and edges. An advantage of this approach is that the ice flow emulator can interface directly with a standard finite element –based ice sheet model by mapping between the finite element mesh and a graph suitable for the GNN emulator. We test the ability of the GNN to predict velocity fields on complex mountain glacier geometries and show how the emulated velocity can be used to solve for mass continuity using a standard finite element approach.more » « less
-
Satellite microwave sensors are well suited for monitoring landscape freeze-thaw (FT) transitions owing to the strong brightness temperature (TB) or backscatter response to changes in liquid water abundance between predominantly frozen and thawed conditions. The FT retrieval is also a sensitive climate indicator with strong biophysical importance. However, retrieval algorithms can have difficulty distinguishing the FT status of soils from that of overlying features such as snow and vegetation, while variable land conditions can also degrade performance. Here, we applied a deep learning model using a multilayer convolutional neural network driven by AMSR2 and SMAP TB records, and trained on surface (~0–5 cm depth) soil temperature FT observations. Soil FT states were classified for the local morning (6 a.m.) and evening (6 p.m.) conditions corresponding to SMAP descending and ascending orbital overpasses, mapped to a 9 km polar grid spanning a five-year (2016–2020) record and Northern Hemisphere domain. Continuous variable estimates of the probability of frozen or thawed conditions were derived using a model cost function optimized against FT observational training data. Model results derived using combined multi-frequency (1.4, 18.7, 36.5 GHz) TBs produced the highest soil FT accuracy over other models derived using only single sensor or single frequency TB inputs. Moreover, SMAP L-band (1.4 GHz) TBs provided enhanced soil FT information and performance gain over model results derived using only AMSR2 TB inputs. The resulting soil FT classification showed favorable and consistent performance against soil FT observations from ERA5 reanalysis (mean percent accuracy, MPA: 92.7%) andin situweather stations (MPA: 91.0%). The soil FT accuracy was generally consistent between morning and afternoon predictions and across different land covers and seasons. The model also showed better FT accuracy than ERA5 against regional weather station measurements (91.0% vs. 86.1% MPA). However, model confidence was lower in complex terrain where FT spatial heterogeneity was likely beneath the effective model grain size. Our results provide a high level of precision in mapping soil FT dynamics to improve understanding of complex seasonal transitions and their influence on ecological processes and climate feedbacks, with the potential to inform Earth system model predictions.more » « less
-
Williamson, Grant (Ed.)Terrestrial LiDAR scans (TLS) offer a rich data source for high-fidelity vegetation characterization, addressing the limitations of traditional fuel sampling methods by capturing spatially explicit distributions that have a significant impact on fire behavior. However, large volumes of complex, high resolution data are difficult to use directly in wildland fire models. In this study, we introduce a novel method that employs a voxelization technique to convert high-resolution TLS data into fine-grained reference voxels, which are subsequently aggregated into lower-fidelity fuel cells for integration into physics-based fire models. This methodology aims to transform the complexity of TLS data into a format amenable for integration into wildland fire models, while retaining essential information about the spatial distribution of vegetation. We evaluate our approach by comparing a range of aggregate geometries in simulated burns to laboratory measurements. The results show insensitivity to fuel cell geometry at fine resolutions (2–8 cm), but we observe deviations in model behavior at the coarsest resolutions considered (16 cm). Our findings highlight the importance of capturing the fine scale spatial continuity present in heterogeneous tree canopies in order to accurately simulate fire behavior in coupled fire-atmosphere models. To the best of our knowledge, this is the first study to examine the use of TLS data to inform fuel inputs to a physics based model at a laboratory scale.more » « less
-
Abstract The geometry and thermal structure of western Greenland ice sheet are known to have undergone relatively substantial change over the Holocene. Evolution of the frozen and melted fractions of the bed associated with the ice-sheet retreat over this time frame remains unclear. We address this question using a thermo-mechanically coupled flowline model to simulate a 11 ka period of ice-sheet retreat in west central Greenland. Results indicate an episode of ~100 km of terminus retreat corresponded to ~16 km of upstream frozen/melted basal boundary migration. The majority of migration of the frozen area is associated with the enhancement of the frictional and strain heating fields, which are accentuated toward the retreating ice margin. The thermally active bedrock layer acts as a heat sink, tending to slow contraction of frozen-bed conditions. Since the bedrock heat flux in our region is relatively low compared to other regions of the ice sheet, the frozen region is relatively greater and therefore more susceptible to marginward changes in the frictional and strain heating fields. Migration of melted regions thus depends on both geometric changes and the antecedent thermal state of the bedrock and ice, both of which vary considerably around the ice sheet.more » « less
An official website of the United States government

Full Text Available